Interaction between Uranium Pentafluoride and the Pentafluorides of Vanadium, Arsenic, Niobium, Tantalum, and Bismuth, and the Tetrafluoride of Sulphur

John H. Holloway and Garry M. Staunton Department of Chemistry, The University, Leicester LE1 7RH Klaus Rediess and Roland Bougon Département de Physico-Chimie, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette, France David Brown Chemistry Division, Atomic Energy Research Establishment, Harwell, Oxfordshire OX11 0RA

The interaction of UF₅ with SF₄, SF₄O, and some Lewis-acid pentafluorides of various strengths has been studied. In anhydrous HF solutions, SF₄ was shown to yield an adduct of composition $3UF_5 \cdot SF_4$ in which both ionic and fluorine-bridged species are present. The pentafluorides of arsenic, tantalum, and niobium combine with UF₅ to give adducts of composition 1.5 UF₅ \cdot AsF₅, UF₅ · 2TaF₅, and UF₅ · 2NbF₅, respectively. The arsenic derivative is stable at room temperature only under a pressure of AsF₅, whereas the tantalum and niobium adducts decompose at higher temperature forming UF₅ · TaF₅ and UF₅ · NbF₅, respectively. Vibrational spectroscopic study of the pentafluoride adducts of UF₅ has shown that they consist of covalent fluorine-bridged species. Uranium pentafluoride is fluorinated at room temperature by VF₅ and by BiF₅ in anhydrous HF.

Uranium pentafluoride behaves as a Lewis acid with fluorideion donors ¹ forming ionic derivatives, whereas with the strong Lewis acid SbF₅ it forms fluorine-bridged adducts which have only minor contributions to the bonding from ionic formulations.^{2,3} Taking into account recent results obtained on the reaction of UF₄O with a series of pentafluorides ⁴ and the structural similarity of the UF₅^{2,3} and UF₄O ⁵ adducts, it seemed worth investigating whether new adducts would be obtained from reaction of UF₅ with Lewis-acid pentafluorides other than SbF₅ or with amphoteric molecules such as SF₄ and SF₄O. This paper reports on the results obtained from a study of the interaction of UF₅ with VF₅, AsF₅, NbF₅, BiF₅, SF₄, and SF₄O.

Experimental

Starting Materials.— β -Uranium pentafluoride was prepared by reduction of UF₆ with sulphur dioxide ⁶ or by u.v.-photolytic reduction using CO as scavenger.⁷ The α form of UF₅ was obtained by heating β -UF₅ at 180 °C in the presence of UF₆.⁸ Vanadium, arsenic, niobium, and tantalum pentafluorides were obtained by fluorination of the metals with elemental fluorine.⁹ Bismuth pentafluoride (Ozark Mahoning) was purified by vacuum sublimation at 120 °C. Sulphur tetrafluoride (P.C.R.) was used without purification. Sulphur tetrafluoride oxide was prepared by direct fluorination of SF₂O,¹⁰ which had been prepared from SCl₂O and SbF₃ in HF,¹¹ or by hydrolysis of SF₄. Anhydrous HF was purified by treatment with gaseous F₂ followed by distillation.

Apparatus.—Volatile materials were manipulated in an allmetal vacuum line equipped with Teflon or metal valves. Most reactions were carried out in FEP-Teflon or Monel containers which were checked for leaks, treated with F_2 and/ or ClF₃, and pumped to a high vacuum prior to use. Solid products were handled in a glove-box flushed with dry nitrogen.

Characterisation.—Reaction stoicheiometries were monitored by mass balance and/or elemental analysis performed by the Analytical Laboratories, Engelskirchen, West Germany. Infrared spectra were recorded with Perkin-Elmer model 457 or 580 spectrometers. Depending on the wavelength range, the ground solids were sandwiched between AgCl, KBr, or Polythene discs. In order to avoid rapid decomposition of the heat-sensitive reaction products by the i.r. beam, the discs were fixed in a vacuum cryostat cooled with liquid nitrogen. Raman spectra were recorded using a Coderg model T800 spectrometer. Solutions were examined in FEP-Teflon reaction tubes but the solid compounds were mounted in sealed Pyrex capillaries. X-Ray patterns were recorded photographically on a Philips camera (diameter 11.46 cm) using Cu- K_{α} filtered radiation. Thermogravimetric changes were recorded on a Stanton Redcroft TG 750 thermobalance and differential scanning calorimetry was carried out using an Arion MCB microcalorimeter.

Reactions with SF4 and SF4O.—The reactions with SF4 were carried out using ca. 2 mmol samples of UF₅. When SF₄ was condensed on to either α -UF₅ or β -UF₅ neither dissolved in the liquid SF₄ at temperatures up to its boiling point. The only change observed was a slow transformation of α -UFs into β -UF₅ suggesting that an intermediate soluble uranium species may exist which precipitates immediately as β -UF₅. When an SF₄-HF solution was used, all of the pentafluoride dissolved in a four-fold excess of SF₄ yielding a blue solution, Raman spectroscopy of which indicated the presence of the $[UF_6]^$ ion. On removing all volatile material at room temperature by pumping, β -UF₅ precipitated readily but minute amounts of a blue compound were also formed. The weight uptake was of the order of 1%. If fresh samples of the uranium-containing solutions were cooled to -78 °C a finely divided light blue crystalline solid precipitated and, in some experiments, after standing for 2 d at this temperature, dark blue crystals were also formed which dissolved readily, along with the light blue material, on slight warming. Pumping at -78 °C yielded a blue powder with a weight increase corresponding to $\frac{1}{2}$ mol SF4 per mol UF5. This result was confirmed by elemental analysis [Found: F, 32.7; S, 2.75; U, 64.3. Calc. for SF₄(UF₅)₃: F, 32.6; S, 2.90; U, 64.5%].

It is worth mentioning that the formation of an $[SF_3]^+$ containing uranium fluoride derivative was also encountered during attempts to prepare the still unknown UF₄S. In these experiments the conditions described by Wilson ¹² for the preparation of UF₄O (*i.e.* a large excess of UF₆ in HF solution) were used but H₂S replaced H₂O. The main products of the reaction were found to be SF₄ and UF₄, the latter reacting with UF₆ to give UF₅ and U₂F₉, in such a way that the products are the same as those obtained from the reaction in the gaseous phase.¹³ When UF₅ and SF₄O were mixed in the presence of HF neither dissolution nor reaction occurred up to room temperature or up to 120 °C without HF.

The UF₅-VF₅ System.—When VF₅ (3.5 mmol) was condensed onto β -UF₅ (0.2 mmol) an immediate reaction took place as the VF₅ melted at room temperature yielding a deep brown colour. The volatile part of the solution was found to consist of VF₅ and UF₆ by Raman spectroscopy and the solid residue was identified as VF₄ by its X-ray powder pattern.

The AsF₅-UF₅ System.—Experimental observations were similar to those on the SF₄-UF₅ system. Complete solubilisation of UF₅ in HF was only attained when a *ca*. four-fold excess of AsF₅ was employed. The blue crystalline product obtained could only be isolated at low temperature and was characterised while permanently cooled with solid CO₂. At room temperature, AsF₅ evolution and formation of β -UF₅ takes place whereas, in a sealed capillary, probably due to the pressure of AsF₅ generated by partial dissociation, the product can be kept for weeks at room temperature. Nevertheless, due to the high dissociation pressure at this temperature, determination of the composition of the adduct was only possible by measurement of the weight uptake of the initial β -UF₅. Based on four preparations, the UF₅-AsF₅ ratio was found to range from 1.51 to 1.59:1 with a mean value of 1.55:1. Contrary to the results previously reported by others,¹⁴ under the conditions described above, no adduct of definite composition such as UF5 AsF5 was obtained.

The UF5-NbF5 and UF5-TaF5 Systems.-For these experiments, measured quantities of β -UF₅ (typically *ca.* 1 mmol) were mixed with a five-fold excess of MF_5 (M = Ta or Nb), onto which HF was condensed. After the mixture had been left at room temperature for 2 h, a pale blue solid above which was a flocculent white solid was obtained. After removal of the HF by distillation the excess of MF₅ was removed from the warmed reaction tube by vacuum sublimation. This procedure allowed monitoring of the initial UF5 weight uptake. For both NbF₅ and TaF₅, the stoicheiometry of the final adduct was found to be UF₅·2MF₅. This formulation was cross-checked through elemental analysis of the Ta adduct (Found: F, 32.1; Ta, 40.7; U, 26.65. Calc. for UF5:2TaF5: F, 32.2; Ta, 40.9; U, 26.9%). Adducts with identical composition were also obtained in glass sublimation vessels by reaction of UF5 with either NbF₅ or TaF₅ in the melt under 200 mmHg (ca. 26 800 Pa) pressure of dry argon.

The UF₅-BiF₅ System.—Bismuth pentafluoride (4 mmol) was mixed with β -UF₅ (ca. 1.6 mmol). The mixture, onto which HF was condensed, was warmed and left at room temperature for 2 h. A blue-green solution over an insoluble residue was observed. The Raman spectrum of the solution showed the presence of UF₆ and BiF₅. After pumping off the volatile material at room temperature, the weight of the solid residue together with the identification of UF_6 in the volatile part indicated that 77% of the initial UFs had been converted into UF₆. Treatment of the solid with a BiF₅-HF mixture followed by filtration and pumping yielded a white solid which did not contain uranium, and the X-ray powder diffraction pattern of which was not identified. The vibrational spectrum of this solid residue corresponded to that of BiFs with only minor changes. For instance, the Raman band at 242 cm⁻¹ was found to be broader than the one corresponding to BiF_5 alone. These features are explained by the formation of an adduct ¹⁵ between BiF_5 and BiF_3 . A thermal decomposition study of this adduct indicated a composition with at least 2 mol of BiF_3 per mol of BiF_5 . No attempts were made to characterise a possible intermediate step in the fluorination of UF_5 by BiF_5 since the hypothetical adduct would have to be isolated at low temperature.

Results and Discussion

No adduct was obtained with VF₅, BiF₅, or SF₄O. With the pentafluorides, fluorination of UF₅ took place while SF₄O is probably too weak a base to react. Formation of new adducts only resulted from the interaction of SF₄, AsF₅, NbF₅, and TaF₅ with UF₅.

The X-ray powder patterns of the adducts are too complex to be indexed. Nevertheless they clearly demonstrate that the new adducts are well defined crystalline compounds which do not contain UF₅ and, in the cases of UF₅·2NbF₅ and UF₅·2TaF₅, the other component pentafluorides, as impurities.

The 3UF₅·SF₄ adduct dissociates rapidly at 30 °C into SF₄ and β -UF₅. Warming further in a sealed tube produces SF₆ and a brown uranium compound which can be identified by its X-ray diffraction powder pattern as U₂F₉. Features arising from both $[SF_3]^{+16,17}$ and $[UF_6]^{-18}$ ions are apparent from the vibrational spectra of SF_4 ·3UF₅ given in the Table. A comparison with the spectra of UF₅¹⁹ and [UF₆]⁻ salts ¹⁸ shows that the Raman bands at 623 and 610 cm⁻¹ and the i.r. bands at 566 and 509 cm⁻¹ are identical to bands associated with β -UF₅. However, the band at 509 cm⁻¹ in the i.r. and that at 623 cm⁻¹ in the Raman could also be assigned to the v_3 and v_1 vibrations of the [UF₆]⁻ ion, and if this is the case the very weak Raman lines at 470 and at 216 cm⁻¹ could be attributed to the $v_2(e_g)$ and $v_5(f_{2g})$ modes of $[UF_6]^-$ respectively. Taking into account the absence of UF₅ (α or β form) lines in the Xray powder pattern of the adduct, the i.r. bands at 629, 592, and 542 cm⁻¹ and the Raman bands at 556 and 523 cm⁻¹ are assigned to a dimeric or polymeric form of UF₅. On this basis it is tempting to formulate the adduct as $[SF_3]^+[UF_6]^-\cdot 2UF_5$. Definitive characterisation, however, is not possible without a single-crystal structure determination.

Besides SF_4 bands ²⁰ the Raman spectrum of a solution of UF_5 in SF_4 -HF shows the v_1 (a_{1q}) vibration of the $[UF_6]^-$ ion and the features of the $[SF_3]^+$ stretching vibration are broadened.

Vibrational spectra of solid 1.5 UF₅·AsF₅ are tentatively assigned in terms of a covalent compound containing bridged $F \cdots AsF_5$ entities with C_{4v} symmetry. In the Raman spectrum only $v_1 (a_1)^{21}$ (677 cm⁻¹) is observed. This is also found as the strongest band in other fluorine-bridged AsF₅ adducts.²² The corresponding i.r. absorption at 663 cm⁻¹ is also observed together with other i.r. modes, $v_5(b_1)$ (540 cm⁻¹), $v_2(a_1)$ (642 cm^{-1}), and the degenerate asymmetric stretching mode $v_8(e)$ (768 and 710 cm⁻¹), attributable to the AsF₅ group. For the interpretation of the remaining bands it is useful to compare the known spectra of the UF₅-SbF₅ adducts² with those reported here for the UF5-AsF5 compound. This shows clearly that absorptions in the U-F stretching region (Raman 647, 601, 595, and 577; i.r. 628, 620, 610, and 576 cm⁻¹) are similar, although at somewhat lower frequency for the highest band (647 vs. 657 cm⁻¹). This shift can be explained by the weaker Lewis acidity of AsF₅ compared with that of SbF₅, leading to a smaller positive charge on the uranium atom. The relative intensities of the appropriate U-F stretching modes in the AsF₅ adduct are identical to those of the SbF₅ adduct. In AsF₅-HF solution the U-F stretching bands are at 638, 599, and 578 cm⁻¹ and no evidence of AsF₅ entities of $C_{4\nu}$ symmetry is observed. On the contrary, the spectrum is more

SF ₄ -UF ₅ System					AsF ₅ -UF ₅ System					
Solid ^a		HF(soln.)	Assignment *		Solid *		HF(soln.)	UFs·2TaFs		UF₅•2NbF₅
I.r.	Raman	Raman	[SF ₃] ^{+ 4}	[UF ₆]-	I.r.	Raman	Raman "	I.r.	Raman	I.r.
962m	962w)							
		952 947 940 934	$v_{i}(a_{i})$							
907m	906m	934)	}							
	894m	892s *	$v_3(e)$							
885m			J		R (0)					
					768m 710m	677m	705s(v1)	750s 709 (sh) 695 (sh)	754s	761s 757 (sh) 732s
					663s			678vs		688vs
					642s 628s	647s	638m	662 (sh)	664m	661 (sh)
629m	623s 610w	627m		ν ₁ (<i>a</i> _{1g})	620s 610s					
592s						601 w 595 w	599w	600 (sh)		602 (sh) 583vs
566s 542 (sh)	556vw	540s *)		576m (sh) 540s	577m	578w 573w(v₂)	576vs	566m	577 (sh)
	535vw 523vw	533 530 }s *	$v_2(a_1)$		0,000					511 (sh)
509s		525	J	$v_3(f_{1u})$				488s		472s
	470w			$v_2(e_g)$						
		455vw *					355w(v₅)	373m		
	216w			$v_{5}(f_{2g})$			555W(V5)	317m		321 m

Table. Vibrational data (1 000-200 cm⁻¹) for the adducts of UF₅ with SF₄, AsF₅, TaF₅, and NbF₅

^a Recorded at -196 °C. ^b From refs. 16—18. ^c Bands arising from SF₄ are marked with an asterisk. ^d v₄(e) was not observed. ^c Assignment given for the [AsF₆]⁻ ion in O_h symmetry from ref. 22.

suggestive of the presence of ionic species, since the Raman bands of the ion $[AsF_6]^-$ are observed. Consequently, partial loss of F⁻ from the uranium fluoride species to yield fluoronium ions such as $[H_2F]^+$ or $[H_3F_2]^+$ may be involved. This assumption is compatible with the solubilisation of UF₅ in these acidic media and the 15 cm⁻¹ increase of the highest U-F Raman frequency as compared to that of UF₅. An identical spectrum was obtained when UF₆ was reduced slowly in AsF₅-HF solution by FEP-Teflon material. This enhanced reactivity of UF₆ in acidic media has been observed previously in SbF₅ solution.^{2,23}

When the adducts $UF_5 \cdot 2MF_5$ (M = Nb or Ta) are heated in a dynamic vacuum they lose MF₅. Weight-loss measurements during the decomposition at 100 °C show that each mol of $UF_5 \cdot 2MF_5$ loses 1 mol of MF₅. Thermogravimetric analysis (t.g.a.) of the adducts yielded no sharply defined plateaux indicating the presence of 1 : 1 species, but points of inflection in the t.g.a. curve were found in the region expected for 1 : 1 adducts.

A differential scanning calorimetric study showed that when UF₃·2TaF₃ is heated two phenomena take place. The first is the formation of UF₃·TaF₃ with the evolution of TaF₃, the maximum thermal effect being observed at 144 °C (135 °C from t.g.a.). The second is the decomposition of UF₃·TaF₃, the maximum thermal effect being detected at 189 °C (186 °C from t.g.a.), and is accompanied by the evolution of a volatile material. It is assumed that this decomposition can be accounted for by equation (1) since the solid residue after heating was shown by X-ray powder diffraction to be UF₄.

$$2UF_5 TaF_5 \longrightarrow UF_4 + UF_6 + 2TaF_5$$
(1)

Similar results were obtained with UF₅·2NbF₅. The maximum thermal effect for the 1:2 to 1:1 conversion being observed at 130 °C (135 °C from t.g.a.). The second step, *i.e.* decomposition of the 1:1 adduct into UF₄, UF₆, and NbF₅, has a maximum thermal effect at 187 °C (175 °C from t.g.a.). The residue, after heating, was again shown to consist of UF₄.

The thermal behaviour of the adducts of both Ta and Nb is quite comparable to that reported for the antimony adducts.³ The vibrational data for the UFs 2MFs adducts are given in the Table. However, the niobium derivative decomposed in the laser beam even at low temperature so that no Raman spectrum was obtained. The vibrational spectra of both UF5.2NbF5 and UF5.2TaF5 are related to that of UF5.2SbF5.2 Bands in the region 760-600 cm⁻¹ may be attributed to terminal Nb-F and Ta-F stretching modes, whilst those in the region 600-500 cm⁻¹ are associated with M-F and U-F stretching. Bands in the region below 500 cm⁻¹ may be assigned to U-F-U, M-F-U, and M-F-M bridging (M = Nb or Ta). On the basis of these results and those reported ^{2,3} for UF₅·2SbF₅ it is postulated that the adducts consist of interlinked lattices of UF₅ and MF₅ (M = Nb or Ta) molecules linked by fluorine bridges. The i.r. spectra of the intermediate adducts UF5 NbF5 and UF5 TaF5 were found to be closely related to those of their parent adducts in the same way as the i.r. spectrum of UF₅'SbF₅ is almost identical² to that of UF5.2SbF5. Both UF5.NbF5 and UF5.TaF5 decompose rapidly in laser beams even at low temperature. The diffraction

UF₅·NbF₅: F, 36.45; Nb, 17.85; U, 45.7%). According to the results obtained by this study several types of interaction have been observed between uranium pentafluoride and the fluoride investigated. As far as the sulphur compounds are concerned, whereas SF₄O is found to be too weak a base or acid to interact, SF₄ acts as a base to yield an adduct in which both true ionic and polymeric, fluorine-bridged entities are present. For the pentafluorides of the Group 5 elements, studied here in a manner similar to that reported for SbF₅, the pentafluorides of arsenic, niobium, and tantalum yield fluorine-bridged adducts whereas those of vanadium and bismuth are reduced to lower fluorides.

1:1 adduct (Found: F, 36.3; Nb, 18.05; U, 45.0. Calc. for

References

2166

- 1 R. A. Penneman, G. D. Sturgeon, and L. B. Asprey, *Inorg. Chem.*, 1964, 3, 126.
- 2 R. Bougon and P. Charpin, J. Fluorine Chem., 1979, 14, 235.
- 3 W. Sawodny, K. Rediess, and U. Thewalt, Z. Anorg. Allg. Chem., 1980, 469, 81.
- 4 J. H. Holloway, D. Laycock, and R. Bougon, J. Chem. Soc., Dalton Trans., 1983, 2303.
- 5 R. Bougon, J. Fawcett, J. H. Holloway, and D. R. Russell, J. Chem. Soc., Dalton Trans., 1979, 1881.

- 6 B. Moncelon, J. Lucas, and T. Kikindai, C.R. Acad. Sci., Ser. C, 1965, 261, 1855.
- 7 G. W. Halshead, P. G. Heller, L. B. Asprey, and K. V. Salazar, *Inorg. Chem.*, 1978, **17**, 2967.
- 8 A. S. Wolf, W. E. Hobbs, and K. E. Rapp, *Inorg. Chem.*, 1965, 4, 755.
- 9 A. D. Beveridge and H. C. Clark, in 'Halogen Chemistry,' ed. V. Gutmann, Academic Press, London, 1967, vol. 3, p. 191; F. Fairbrother, *ibid.*, vol. 3, p. 123; L. Kolditz, *ibid.*, vol. 2, p. 116.
- 10 J. K. Ruff, *Inorg. Synth.*, 1968, **11**, 131. 11 K. Rediess, unpublished work.
- 12 P. W. Wilson, J. Inorg. Nucl. Chem., 1974, 36, 303.
- 13 L. E. Trevorrow, J. Fischer, and W. H. Gunther, *Inorg. Chem.*, 1963, 2, 1281.
- 14 B. Frlec and D. Gantar, J. Fluorine Chem., 1980, 16, 633.
- 15 K. O. Christe, W. W. Wilson, and E. C. Curtis, *Inorg. Chem.*, 1979, 18, 2578.
- 16 M. Azeem, M. Brownstein, and R. J. Gillespie, Can. J. Chem., 1967, 47, 4159.
- 17 M. Brownstein and J. Shamir, Appl. Spectrosc., 1972, 26, 77.
- 18 J. P. Masson, J. P. Desmoulin, P. Charpin, and R. Bougon, Inorg. Chem., 1976, 15, 2529 and refs. therein.
- 19 L. B. Asprey and R. T. Paine, J. Chem. Soc., Chem. Commun., 1973, 920.
- 20 K. O. Christe, E. C. Curtis, C. J. Schack, S. J. Cyvin, J. Brunvoll, and W. Sawodny, Spectrochim. Acta, Part A, 1976, 32, 1141.
- 21 A. K. L. Aljibury and R. L. Redington, J. Chem. Phys., 1970, 52, 453.
- 22 B. Frlec, D. Gantar, and J. H. Holloway, J. Fluorine Chem., 1982, 19, 485.
- 23 A. D. Turissimi and R. F. Stahl, Ind. Eng. Chem., 1958, 50, 1771.

Received 26th October 1983; Paper 3/1906